Units
Electromagnetic units are part of a system of electrical units based primarily upon the magnetic properties of electric currents, the fundamental SI unit being the ampere. The units are:
In the electromagnetic cgs system, electrical current is a fundamental quantity defined via Ampère's law and takes the permeability as a dimensionless quantity (relative permeability) whose value in a vacuum is unity. As a consequence, the square of the speed of light appears explicitly in some of the equations interrelating quantities in this system.
SI electromagnetism units | ||||
---|---|---|---|---|
Symbol[2] | Name of Quantity | Derived Units | Unit | Base Units |
I | Electric current | ampere (SI base unit) | A | A (= W/V = C/s) |
Q | Electric charge | coulomb | C | A·s |
U, ΔV, Δφ; E | Potential difference; Electromotive force | volt | V | J/C = kg·m2·s−3·A−1 |
R; Z; X | Electric resistance; Impedance; Reactance | ohm | Ω | V/A = kg·m2·s−3·A−2 |
ρ | Resistivity | ohm metre | Ω·m | kg·m3·s−3·A−2 |
P | Electric power | watt | W | V·A = kg·m2·s−3 |
C | Capacitance | farad | F | C/V = kg−1·m−2·A2·s4 |
E | Electric field strength | volt per metre | V/m | N/C = kg·m·A−1·s−3 |
D | Electric displacement field | Coulomb per square metre | C/m2 | A·s·m−2 |
ε | Permittivity | farad per metre | F/m | kg−1·m−3·A2·s4 |
χe | Electric susceptibility | (dimensionless) | - | - |
G; Y; B | Conductance; Admittance; Susceptance | siemens | S | Ω−1 = kg−1·m−2·s3·A2 |
κ, γ, σ | Conductivity | siemens per metre | S/m | kg−1·m−3·s3·A2 |
B | Magnetic flux density, Magnetic induction | tesla | T | Wb/m2 = kg·s−2·A−1 = N·A−1·m−1 |
Φ | Magnetic flux | weber | Wb | V·s = kg·m2·s−2·A−1 |
H | Magnetic field strength | ampere per metre | A/m | A·m−1 |
L, M | Inductance | henry | H | Wb/A = V·s/A = kg·m2·s−2·A−2 |
μ | Permeability | henry per metre | H/m | kg·m·s−2·A−2 |
χ | Magnetic susceptibility | (dimensionless) | - | - |
Electromagnetic phenomena
With the exception of gravitation, electromagnetic phenomena as described by quantum electrodynamics (which includes as a limiting case classical electrodynamics) account for almost all physical phenomena observable to the unaided human senses, including light and otherelectromagnetic radiation, all of chemistry, most of mechanics (excepting gravitation), and of course magnetism and electricity. Magnetic monopoles (and "Gilbert" dipoles) are not strictly electromagnetic phenomena, since in standard electromagnetism, magnetic fields are generated not by true "magnetic charge" but by currents. There are, however, condensed matter analogs of magnetic monopoles in exotic materials(spin ice) created in the laboratory.
No comments:
Post a Comment