Thursday, May 20, 2010

Electric motor


An electric motor uses electrical energy to produce mechanical energy, very typically through the interaction of magnetic fields and current-carrying conductors. The reverse process, producing electrical energy from mechanical energy, is accomplished by a generator or dynamo. Many types of electric motors can be run as generators, and vice versa. For example a starter/generator for agas turbine or Traction motors used on vehicles often perform both tasks.
Electric motors

Electric motors are found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered bydirect current (for example a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the millions of watts. Electric motors may be classified by the source of electric power, by their internal construction, by their application, or by the type of motion they give.

The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.

Some devices, such as magnetic solenoids and loudspeakers, although they generate some mechanical power, are not generally referred to as electric motors, and are usually termed actuators and transducers, respectively.






History and development

Faraday's Electromagnetic experiment, 1821.[3]


The principle

The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a circular magnetic field around the wire. This motor is often demonstrated in school physics classes, but brine (salt water) is sometimes used in place of the toxic mercury. This is the simplest form of a class of devices called homopolar motors. A later refinement is the Barlow's Wheel. These were demonstration devices only, unsuited to practical applications due to their primitive construction.

Jedlik's "lightning-magnetic self-rotor", 1827. (Museum of Applied Arts, Budapest.)

In 1827, Hungarian Ányos Jedlik started experimenting with electromagnetic rotating devices he called "lightning-magnetic self-rotors". He used them for instructive purposes in universities, and in 1828 demonstrated the first device which contained the three main components of practical direct currentmotors: the stator, rotor and commutator. Both the stationary and the revolving parts were electromagnetic, employing no permanent magnets. Again, the devices had no practical application.


The first electric motors

The first commutator-type direct current electric motor capable of turning machinery was invented by the British scientist William Sturgeon in 1832. Following Sturgeon's work, a commutator-type direct-current electric motor made with the intention of commercial use was built by Americans Emilyand Thomas Davenport and patented in 1837. Their motors ran at up to 600 revolutions per minute, and powered machine tools and a printing press. Due to the high cost of the zinc electrodes required by primary battery power, the motors were commercially unsuccessful and the Davenports went bankrupt. Several inventors followed Sturgeon in the development of DC motors but all encountered the same cost issues with primary battery power. No electricity distribution had been developed at the time. Like Sturgeon's motor, there was no practical commercial market for these motors.

In 1855 Jedlik built a device using similar principles to those used in his electromagnetic self-rotors that was capable of useful work. He built a model electric motor-propelled vehicle that same year. There is no evidence that this experimentation was communicated to the wider scientific world at that time, or that it influenced the development of electric motors in the following decades.

The modern DC motor was invented by accident in 1873, when Zénobe Gramme connected the dynamo he had invented to a second similar unit, driving it as a motor. The Gramme machine was the first electric motor that was successful in the industry.

In 1886 Frank Julian Sprague invented the first practical DC motor, a non-sparking motor capable of constant speed under variable loads. Other Sprague electric inventions about this time greatly improved grid electric distribution [prior work done while employed by Edison], allowed power from electric motors to be returned to the electric grid, provided for electric distribution to trolleys via overhead wires and the trolley pole, and provided controls systems for electric operations. This allowed Sprague to use electric motors to invent the first electric trolley system in 1887-88 in Richmond VA, the electric elevator and control system in 1892, and the electric subway with independently powered centrally controlled cars, which was first installed in 1892 in Chicago by the South Side Elevated Railway where it became popularly known as the "L". Sprague's motor and related inventions led to an explosion of interest and use in electric motors for industry, while almost simultaneously another great inventor was developing its primary competitor, which would become much more widespread.

In 1888 Nikola Tesla invented the first practicable AC motor and with it the polyphase power transmission system. Tesla continued his work on the AC motor in the years to follow at the Westinghouse company.

The development of electric motors of acceptable efficiency was delayed for several decades by failure to recognize the extreme importance of a relatively-small air gap between rotor and stator. Early motors, for some rotor positions, had comparatively huge air gaps which constituted a very high reluctance magnetic circuit. They produced far-lower torque than an equivalent amount of power would produce with efficient designs. The cause of the lack of understanding seems to be that early designs were based on familiarity of distant attraction between a magnet and a piece of ferromagnetic material, or between two electromagnets. Efficient designs, as this article describes, are based on a rotor with a comparatively small air gap, and flux patterns that create torque.

Note that the armature bars are at some distance (unknown) from the field pole pieces when power is fed to one of the field magnets; the air gap is likely to be considerable. The text tells of the inefficiency of the design. (Electricity was created, as a practical matter, by consuming zinc in wet primary cells!)

In his workshops Froment had an electromotive engine of one-horse power. But, though an interesting application of the transformation of energy, these machines will never be practically applied on the large scale in manufactures, for the expense of the acids and the zinc which they use very far exceeds that of the coal in steam-engines of the same force. [...] motors worked by electricity, independently of any question as to the cost of construction, or of the cost of the acids, are at least sixty times as dear to work as steam-engines.

Although Gramme's design was comparatively much more efficient, apparently the Froment motor was still considered illustrative, years later. It is of some interest that the St. Louis motor, long used in classrooms to illustrate motor principles, is extremely inefficient for the same reason, as well as appearing nothing like a modern motor. Photo of a traditional form of the motor: [3] Note the prominent bar magnets, and the huge air gap at the ends opposite the rotor. Even modern versions still have big air gaps if the rotor poles are not aligned.

Application of electric motors revolutionized industry. Industrial processes were no longer limited by power transmission using shaft, belts, compressed air or hydraulic pressure. Instead every machine could be equipped with its own electric motor, providing easy control at the point of use, and improving power transmission efficiency. Electric motors applied in agriculture eliminated human and animal muscle power from such tasks as handling grain or pumping water. Household uses of electric motors reduced heavy labor in the home and made higher standards of convenience, comfort and safety possible. Today, electric motors consume more than half of all electric energy produced.


No comments:

Post a Comment